Monday, September 24, 2012

Cheaper way to produce nickel ferrite ceramic thin films

ScienceDaily (Sep. 24, 2012) ? Researchers from North Carolina State University and the Georgia Institute of Technology have demonstrated a less-expensive way to create textured nickel ferrite (NFO) ceramic thin films, which can easily be scaled up to address manufacturing needs. NFO is a magnetic material that holds promise for microwave technologies and next-generation memory devices.

Specifically, this is the first time researchers have used a chemical deposition process to create NFO thin films that are "textured" -- meaning they have an aligned crystalline structure. Arraying the crystalline structure in an orderly fashion is important because it maximizes the magnetic properties of the material.

Using a chemical deposition process also makes it easier to modify, or "dope," the NFO by adding additional materials, such as zinc. By doping the NFO, researchers can optimize the material for various applications. For example, adding zinc allows the NFO to retain its magnetic properties at higher temperatures.

The technique used to create the NFO thin films begins by introducing nickel and iron compounds into an organic solvent to create an NFO solution. The solution is then injected onto a silicon wafer that has been coated with platinum. The wafer is then spun, spreading the solution uniformly across the wafer's surface. The wafer is heated to evaporate the solvent, then heated again to 750 degrees Celsius to crystallize the NFO.

"This approach can be used to deposit textured NFO thin films over areas at least as large as 10 centimeters by 10 centimeters," says Dr. Justin Schwartz, co-author of the paper, Kobe Steel Distinguished Professor and Department Head of the Materials Science and Engineering Department at NC State. Previous efforts to create textured NFO thin films have relied on techniques that can only deposit such thin films over a small area.

The paper, "Growth of (111) oriented NiFe2O4 polycrystalline thin films on Pt (111) via sol-gel processing," was published online Sept. 19 in the Journal of Applied Physics. The paper's lead author is Safoura Seifikar, a Ph.D. student at NC State. The paper was co-authored by Edward Sachet, a Ph.D. student at NC State; Dr. Thomas Rawdanowicz, research professor at NC State; Ali Tabei, a Ph.D. student at Georgia Tech; and Dr. Nazanin Bassiri-Gharb of Georgia Tech. The research was funded by the National Science Foundation.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by North Carolina State University.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Safoura Seifikar, Ali Tabei, Edward Sachet, Thomas Rawdanowicz, Nazanin Bassiri-Gharb, Justin Schwartz. Growth of (111) oriented NiFe2O4 polycrystalline thin films on Pt (111) via sol-gel processing. Journal of Applied Physics, 2012; 112 (6): 063908 DOI: 10.1063/1.4752725

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/~3/as03ExYaQYU/120924111828.htm

joe paterno died 49ers game ravens ray lewis steven tyler national anthem paterno newt gingrich

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.